Regular functions on spherical nilpotent orbits in complex symmetric pairs: Classical Hermitian cases

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rings of Regular Functions on Spherical Nilpotent Orbits for Complex Classical Groups

Let G be a classical group and let g be its Lie algebra. For a nilpotent element X E g, the ring R(Ox) of regular functions on the nilpotent orbit Ox is a Gmodule. In this thesis, we will decompose it into irreducible representations of G for some spherical nilpotent orbits. Thesis Supervisor: David Alexander Vogan Title: Professor of Mathematics

متن کامل

Classification of Spherical Nilpotent Orbits in Complex Symmetric Space

Let G be the adjoint group of the simple real Lie algebra g , and let K C → Aut(p C ) be the complexified isotropy representation at the identity coset of the corresponding symmetric space. We classify the spherical nilpotent K C orbits in p C .

متن کامل

Nilpotent Orbits and Complex Dual Pairs

τ(w)(x) = 〈x(w), w〉, w ∈ W, x ∈ g ⊆ End(W ), and similarly for τ ′. Our main theorem describes the behaviour of closures of nilpotent orbits under the action of moment maps. It is easy to see that for a nilpotent coadjoint orbit O ⊆ g∗ the set τ ′(τ−1(O)) is the union of nilpotent coadjoint orbits in g′. It turns out that it is a closure of a single orbit: Theorem 1.1 Let O ⊆ g∗ be a nilpotent ...

متن کامل

Theta Lifting of Nilpotent Orbits for Symmetric Pairs

We consider a reductive dual pair (G,G′) in the stable range with G′ the smaller member and of Hermitian symmetric type. We study the theta lifting of nilpotent K ′ C-orbits, where K ′ is a maximal compact subgroup of G′ and we describe the precise KC-module structure of the regular function ring of the closure of the lifted nilpotent orbit of the symmetric pair (G,K). As an application, we pro...

متن کامل

Some Amazing Properties of Spherical Nilpotent Orbits

Let G be a simple algebraic group defined over an algebraically closed field k of characteristic zero. Write g for its Lie algebra. Let x ∈ g be a nilpotent element and G·x ⊂ g the corresponding nilpotent orbit. The maximal number m such that (adx) 6= 0 is called the height of x or of G·x, denoted ht(x). Recall that an irreducible G-variety X is called G-spherical if a Borel subgroup of G has a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyoto Journal of Mathematics

سال: 2020

ISSN: 2156-2261

DOI: 10.1215/21562261-2019-0039